polymer communications

Dynamic dimensions in the polyacrylamide-water system

T. Schwartz, J. François and G. Weill

Centre de Recherches sur les Macromolécules, CNRS, Strasbourg, France (Received 12 November 1979)

A careful study of polyacrylamide in aqueous solutions¹, performed with well-characterized fractions, has revealed the following exponents of the radius of gyration, R_G and intrinsic viscosity $[\eta]$ -molecular weight power laws:

$$R_G = 0.0749 \, M^{0.64} \tag{1}$$

$$[\eta] = 9.33 \times 10^{-3} M^{0.75} \tag{2}$$

The exponents of these laws present two peculiarities. First, the value of 0.64 is significantly higher than the expected classical one $\nu = 0.60$ and has been cross-checked by the analysis of the asymptotical behaviour of the scattering curve S(q), in the case of very high molecular weight samples.

Secondly, the relation between the two exponents v = 0.64and a = 0.75 does not fit the classical Flory-Fox relation²:

$$[\eta] = \phi 6^{3/2} R_C^3 / M$$

which leads to

 $a = 3\nu - 1$

Indeed, one would expect a = 0.8 for v = 0.6 and a = 0.92 if we take v = 0.64. In fact, in spite of its common use, this relation is seldom verified by experiments. Many attempts³ have been made in order to explain its failure and have led to the introduction of a distinction between the static and dynamic dimensions R_G and R_D of a polymer chain: one has to write for the intrinsic viscosity:

$$[\eta] \propto \frac{R_G^2 R_D}{M} \tag{3}$$

and the translational diffusion coefficient D and sedimentation coefficient S must be expressed as:

$$D \propto \frac{1}{R_D} \neq \frac{1}{R_G} \tag{4}$$

$$S \propto \frac{M}{R_D}$$
(5)

Several experimental studies have shown that the exponents v_G and v_D in the power laws for R_G and R_D are indeed different⁴.

Recently, Weill and Des Cloizeaux⁵ have suggested that this discrepancy can be due to a crossover effect between Gaussian and excluded volume statistics, occurring at a critical number of segments N_c (ref. 6). Their theory predicts that v_G increases rapidly from 0.5 at $N/N_c \le 1$ to 0.60 at $N/N_c \sim 6$ while v_D increases rather slowly and reaches its asymptotic value 0.60 at much higher values of $N/N_c > 100$. Therefore, in an intermediate range of molecular weight depending on the value of N_c characteristic of the polymer solvent system, one must observe a difference between the effective values $v_D < v_G$.

Such a theory, if it does not explain the high value of v = 0.64 (a point which is considered in a separate paper?), should at least give an interpretation of the relation between v_G and *a*, since from equation (3):

$$a = 2\nu_G + \nu_D - 1$$

Measurements of S and D have therefore been performed in order to obtain v_D . Simultaneously it is possible to check the value of v_G from purely hydrodynamic experiments. It has already been shown in one case⁸ where the values of $[\eta]$ and D were known on individual fractions that a log-log plot of the product $[\eta] DM$, proportional to R_G^2 (see equations (3) and (4)), versus M can provide an accurate value of v_G (ref. 8). The same holds for the product $[\eta]S$.

Experimental

Samples. A commercial polyacrylamide sample from CALGON was carefully purified, analysed and fractionated. All details concerning the preparation and characterization of the different fractions are reported elsewhere¹. The weight-average molecular weights measured by light scattering, and the polydispersity indices determined from gel chromatography are given in *Table 1*.

Sedimentation coefficient S and translational diffusion coefficient D measurements. A SPINCO Model E Analytical Ultracentrifuge was used for both S and D measurements.

Sedimentation coefficient. In all experiments the rotor speed was 45 000 rpm. Photographs of the Schlieren pattern were taken every 8 min and analysed with a Nikon Model 6C profile projector. The apparent sedimentation coefficient S_{app} was determined for each concentration from the usual linear log *r versus t* plot, (*r* being the distance of the peak of the Schlieren pattern measured from the centre of the rotation and *t* the time), using least square analysis. Dilution effects due to the cell shape and hydrostatic pressure effects Table 1

	M _W (10 ⁻⁶) (ref. 1)	<i>S_w</i> (10 ¹²)	D _W (10 ⁸)	M(S/D) _{exp} (10 ⁻⁶)	M(S/D) _{cal} (10 ⁻⁶)	M _W /M _n (ref. 1)	[η] (cm ³ g ⁻¹) (ref. 1)
Foa	8.2	2.04	2.57	7.0	-	1.15	
Fia	6.7	2.24	2.75	6.2	6.4	1.2	1258
F ₂ b	6.1	2.00		-	-	1.2	1071
F ₁₃	2.9	1.82	-	_	_	1.4	
F ₂ c	2.56	1.29	5.01	2.26	2.11	1.3	_
F ₂₃	0.92	0.71	8.31	0.75	0.78	1.35	263.0
F ₂₄	0.32	0.45		_	_	1.2	120.2
1ĀP	0.13	0.34	23.24	0.10	0.097	1.4	52.5

Figure 1 Log-log plot of S and D versus M. ____, straight line given by least square analysis; _ _ _ , straight line with slope 0.6

can sometimes lead to a time dependence of S_{app} , but the good linearity of our curves $\log r = f(t)$ allows us to neglect these effects.

The concentrations of our solutions ranged between 10^{-4} and 10^{-3} g cm⁻³ and the sedimentation coefficient S was determined by extrapolation at c = 0 of the straight line $1/S_{app} = f(c)$. For a polymolecular sample, we obtained S_w , the weight average value of S.

Translation diffusion coefficient. A synthetic boundary cell and a low rotor speed (22 000 rpm) was used in order to obtain the sedimentation equilibrium conditions. D was calculated using the surface method:

$$D \propto \frac{(\Delta c)^2}{\left(\frac{\partial c}{\partial r}\right)^2}_{max} t$$

 $(\partial c/\partial r)_{max}$, the maximum value of the gradient, is proportional to the maximum height H_{max} of the curve of concentration (or index of refraction) gradient. Δc , the concentration difference between the two cell compartments, is proportional to the surface A_t , limited by the curve. t, the diffusion time = $t_m - t_0$.

In practice:

$$D \propto \left(\frac{A_t}{H_{max}}\right)^2 \frac{1}{(t_m - t_0)}$$
 (6)

 A_t is determined either by planimetry or by summation of

elementary surfaces, the two methods being in good agreement. t_0 , the real zero time for the beginning of the diffusion process, corresponds to the value of t_m , (time measured from the beginning of the experiment) for which $(A_t/H_{max})^2$ = 0.

Corrections related to dilution effects and to the displacement with respect to the force field are not necessary since we have verified that the distance of H_{max} from the meniscus does not vary during our experiments.

The value of D calculated from equation (6) depends on time and we have to extrapolate at $t_m - t_0 = 0$, neglecting the first points which correspond to a situation where the sedimentation equilibrium is not reached.

The measurement was carried out on only one solution of each sample, but the concentrations $(10^{-4} \text{ g cm}^{-3} \text{ for})$ higher molecular weight and $\sim 10^{-3} \text{ g cm}^{-3}$ for the lower) are chosen so that we could neglect the concentration effects on friction coefficient *F*, which are known from previous sedimentation studies.

Results

Our experimental results are reported in *Table 1* and the log-log plots of S and D versus M are shown in Figure 1.

The power laws determined by least square analysis are:

$$D = 1.24 \times 10^{-4} M_w^{-0.53 \pm 0.01} \,\mathrm{cm}^2 \,\mathrm{s}^{-1} \tag{7}$$

$$S = 1.07 \times 10^{-15} M_w^{0.48 \pm 0.01}$$
Svedberg (8)

One can obtain a comparison for these results from the Svedberg relation:

$$M = \frac{1 - \bar{\nu}_{sp} d_1}{RT} \frac{S}{D} = C \frac{S}{D}$$
(9)

where $\bar{\nu}_{sp}$ is the partial specific volume of the polymer (0.708 cm³ g⁻¹ for polyacrylamide in aqueous solutions¹) and d_1 the solvent density. The values of *M* designated by $M(S/D)_{exp}$ thus obtained are reported in *Table 1*. They are normally lower than the weight average M_w measured by light scattering, since they correspond to:

$$M\left(\frac{S}{D}\right) \sim \frac{0}{\int_{0}^{\infty} Mf(M)M^{0.48} \mathrm{d}M}{\int_{0}^{\infty} Mf(M)M^{-0.53} \mathrm{d}M}$$
(10)

Figure 2 Weight distribution function of molecular weight of the F_{23} sample

From the weight distribution function f(M), given by our previous g.p.c. experiments, we can calculate from equation (10) a value $M(S/D)_{cal}$. Figure 2 shows, in the case of the f_{23} fraction, how the three averages M_w , M(S/D) and M_n are situated with respect to the distribution function. The good agreement between the values $M(S/D)_{cal}$ and $M(S/D)_{exp}$ given in Table 1 provides a confirmation of the validity of the power laws (7) and (8).

Discussion

Essentially, these results lead us to draw two conclusions. The dynamic exponent $\nu_D \sim (0.53-0.52)$ is much smaller than the static exponent $\nu_G = 0.64$. The Weill and Des Cloizeaux theory predicts this in the case of a poor solvent. The values of A_2 obtained in water solution¹ as well as the values of the expansion factor α obtained from a comparison of the dimensions with those in a θ solvent⁹ indeed show that water is not a good solvent, and that in the range of molecular weight under study, N/N_c remains smaller than 5×10^2 (ref. 8).

The high value $\nu_G = 0.64$ is confirmed by the measurement of the dynamic quantities $[\eta]$, S and D. For the individual fractions for which all three quantities have been independently measured, the two equivalent products $[\eta] DM$ and $[\eta] CS$ (see equation 9) have been calculated. The loglog plot of these two products versus M (represented in Figure 3) gives, from least square analysis, a slope of $2\nu_G =$ 1.28 in excellent agreement with the result of the direct

Figure 3 Log-log plot of the products $(C[\eta] S)$, \bullet , and $([\eta] DM)$, \Box , versus M

measurements of the radius of gyration. Such a result substantiates simultaneeously the abnormally high value of ν_G found in direct experiments and the validity of the combination of dynamic quantities such as $[\eta]$, D and S to obtain ν_G . A direct combination of the power laws for $[\eta]$, S and D ($a = 2\nu_G + \nu_D - 1$, see equation (3)) would lead to a less satisfactory agreement. Using the values of ν_G and ν_D in equations (1), (7) and (8), one would get $a = 0.80 \pm 0.02$, or inversely, using the values of a and ν_D , one would get $\nu_G =$ 0.61 ± 0.02 . This discrepancy calls attention to the difficulties of combining power laws obtained by a separate fitting of related quantities in a range of molecular weight where ν_D and eventually ν_G are only 'effective' indices⁵.

References

- 1 François, J., Sarazin, D., Schwartz, T. and Weill, G. *Polymer* 1979, **20**, 969
- 2 Flory, P. J. and Fox, T. G. J. Am. Chem. Soc. 1951, 73, 1904
- 3 Yamakawa, A., 'Modern Theory of Polymer Solutions', Harper and Row, London
- 4 Adam, M. and Delsanti, M. J. Phys. (Paris) 1976, 37, 1045
- 5 Weill, G. and des Cloizeaux, J. J. Phys. (Paris) 1979, 40, 99
- 6 de Gennes, P. G. Phys. Lett. 1972, 38A, 339
- 7 Francois, J., Schwartz, T. and Weill, G. J. Phys. (Paris), Lett. 1980, 41, 9
- 8 Schmitt, A. J. Phys. (Paris) Lett. 1979, 40, 317
- 9 Schwartz, T., Sabbadin, J. and François, J. Polymer to be published